Cette offre n’est plus disponible.

Biostatistician : Heterogeneous treatment effects Overview of biostatistical/Machine Learning methods and their implementation (internship)

Stage(5 à 6 mois)
Paris
Salaire : Non spécifié
Début : 29 février 2024
Télétravail non autorisé
Expérience : < 6 mois
Éducation : Bac +5 / Master

Quinten
Quinten

Cette offre vous tente ?

Questions et réponses sur l'offre

Le poste

Descriptif du poste

Context

It is well-known that treatment effects may not be homogeneous across the study population [1]. This has led to the development of numerous algorithms aimed at exploring how treatment effects can differ among subgroups in a clinical setting [2].

Moreover, even though subgroup analysis are performed on a regular basis in confirmatory (Phase III) clinical trials, there remains a potential for unobserved heterogeneity. This particularly holds true in the experimental setting where the number of enrolled patients remains limited.

The increasing access to RWD derived from patient care facilitates the generation of evidence, thereby informing clinical decisions tailored to specific patient subgroups. Consequently, there is growing opportunity to identify significant heterogeneity of treatment effects within these subgroups in a RW setting [3,4].

Over the past ten years, ML techniques have been increasingly developed for identifying subgroups that exhibit varying treatment effects [5]. Given the potential of ML, investigating algorithms that can further elucidate patient subgroups, and potentially individualized responses, is of particular interest. 

Objectives

The master’s student is expected to:

  1. Perform an up-to-date methodological literature review to identify relevant biostatistical and ML approaches for investigating treatment effect variability in RW settings; 

  2. Based on the findings from the literature review, identify potential strengths and limitations of these methods as regards specific clinical contexts; 

  3. Implement a selection subset of the identified methods on to RWD; 

  4. Write a manuscript intended for submission to an international peer-reviewed journal. 

References

  1. European Medicines Agency. (2019). Guideline on the investigation of subgroups in confirmatory clinical trials. EMA/CHMP/539146 

  2. Sun, S., Sechidis, K., Chen, Y., Lu, J., Ma, C., Mirshani, A., Ohlssen, D., Vandemeulebroecke, M., & Bornkamp, B. (2022). Comparing algorithms for characterizing treatment effect heterogeneity in randomized trials. Biometrical Journal. https://doi.org/10.1002/bimj.202100337 

  3. Segal, J. B., Varadhan, R., Groenwold, R. H. H., Li, X., Nomura, K., Kaplan, S., Ardeshirrouhanifard, S., Heyward, J., Nyberg, F., & Burcu, M. (2023). Assessing heterogeneity of treatment effect in real-world data. Annals of Internal Medicine, 176(4), 536–544. https://doi.org/10.7326/M22-1510 

  4. Emmott N, Maryam N, Yankah S, Hendricks-Sturrup R. Improving Patient Subgroup Representation with Real-World Data: Real World Efficacy and Patient Subgroups. Available from: https://healthpolicy.duke.edu/sites/default/files/2023-09/Improving%20Patient%20Subgroup%20Representation%20with%20Real%20World%20Data.pdf 

  5. Loh, W.-Y., Cao, L., & Zhou, P. (2019). Subgroup identification for precision medicine: A comparative review of 13 methods. Wiley Interdisciplinary Reviews. Data Mining and Knowledge Discovery, 9(5), e1326. https://doi.org/10.1002/widm.1326


Profil recherché

  • Strong knowledge of biostatistics (Master program, engineering school in statistics or equivalent) 

  • Excellent working knowledge in statistical programming (R and/or Python) 

  • Interest in medical research 

  • Fluency in written and oral scientific English


Déroulement des entretiens

  1. One meeting with HR

  2. Technical use case

  3. Meeting with Quinten Healthcare Manager

Envie d’en savoir plus ?

D’autres offres vous correspondent !

Ces entreprises recrutent aussi au poste de “Data Analysis”.

  1. Believe
    Believe
    Believe

    Paris

    Stage
    Télétravail fréquent
  2. Keobiz
    Keobiz
    Keobiz

  3. Inex Circular
    Inex Circular
    Inex Circular

    Paris

    Stage
    Télétravail fréquent
    1K € par mois
  4. ClubFunding Group
    ClubFunding Group
    ClubFunding Group

  5. Ynstant
    Ynstant
    Ynstant

    Paris

    Stage
    Télétravail fréquent
Voir toutes les offres