Biostatistician : Heterogeneous treatment effects    Overview of biostatistical/Machine Learning methods and their implementation  (internship)
Quinten
Quinten

Biostatistician : Heterogeneous treatment effects Overview of biostatistical/Machine Learning methods and their implementation (internship)

  • 8 Rue Vernier, Paris, 75017
  • Stage (5 à 6 mois)
    Début :
    Éducation : Bac +5 / Master
    Expérience : < 6 mois

    Qui sont-ils ?

    Quinten est une société d’experts de l’Intelligence Artificielle au service de l’efficacité des métiers de l’entreprise. Elle bâtit depuis plus de 14 ans des solutions sur mesure d’aide à la décision tirant parti du plein potentiel des données avec un objectif clair et des bénéfices systématiques pour ses clients.

    Quinten se différencie de ses concurrents directs, non seulement par sa longue expérience multisectorielle, en particulier en santé et en Banque/Assurance et ses choix technologiques résolument tournés vers l’augmentation de l’humain, mais aussi par sa capacité à concevoir, développer et industrialiser de véritables solutions d’aide à la décision, dont certaines sont utilisées par des milliers d’utilisateurs

    Grâce à une capitalisation interne constante et une R&D à la pointe du marché, Quinten trouve les solutions qui font entrer la donnée dans l’amélioration de la performance qu’attendent ses clients. Enfin c’est une société partenaire stratégique de la transformation numérique de plusieurs entreprises de premier plan.

    Descriptif du poste

    Context

    It is well-known that treatment effects may not be homogeneous across the study population [1]. This has led to the development of numerous algorithms aimed at exploring how treatment effects can differ among subgroups in a clinical setting [2].

    Moreover, even though subgroup analysis are performed on a regular basis in confirmatory (Phase III) clinical trials, there remains a potential for unobserved heterogeneity. This particularly holds true in the experimental setting where the number of enrolled patients remains limited.

    The increasing access to RWD derived from patient care facilitates the generation of evidence, thereby informing clinical decisions tailored to specific patient subgroups. Consequently, there is growing opportunity to identify significant heterogeneity of treatment effects within these subgroups in a RW setting [3,4].

    Over the past ten years, ML techniques have been increasingly developed for identifying subgroups that exhibit varying treatment effects [5]. Given the potential of ML, investigating algorithms that can further elucidate patient subgroups, and potentially individualized responses, is of particular interest. 

    Objectives

    The master’s student is expected to:

    1. Perform an up-to-date methodological literature review to identify relevant biostatistical and ML approaches for investigating treatment effect variability in RW settings; 

    2. Based on the findings from the literature review, identify potential strengths and limitations of these methods as regards specific clinical contexts; 

    3. Implement a selection subset of the identified methods on to RWD; 

    4. Write a manuscript intended for submission to an international peer-reviewed journal. 

    References

    1. European Medicines Agency. (2019). Guideline on the investigation of subgroups in confirmatory clinical trials. EMA/CHMP/539146 

    2. Sun, S., Sechidis, K., Chen, Y., Lu, J., Ma, C., Mirshani, A., Ohlssen, D., Vandemeulebroecke, M., & Bornkamp, B. (2022). Comparing algorithms for characterizing treatment effect heterogeneity in randomized trials. Biometrical Journal. https://doi.org/10.1002/bimj.202100337 

    3. Segal, J. B., Varadhan, R., Groenwold, R. H. H., Li, X., Nomura, K., Kaplan, S., Ardeshirrouhanifard, S., Heyward, J., Nyberg, F., & Burcu, M. (2023). Assessing heterogeneity of treatment effect in real-world data. Annals of Internal Medicine, 176(4), 536–544. https://doi.org/10.7326/M22-1510 

    4. Emmott N, Maryam N, Yankah S, Hendricks-Sturrup R. Improving Patient Subgroup Representation with Real-World Data: Real World Efficacy and Patient Subgroups. Available from: https://healthpolicy.duke.edu/sites/default/files/2023-09/Improving%20Patient%20Subgroup%20Representation%20with%20Real%20World%20Data.pdf 

    5. Loh, W.-Y., Cao, L., & Zhou, P. (2019). Subgroup identification for precision medicine: A comparative review of 13 methods. Wiley Interdisciplinary Reviews. Data Mining and Knowledge Discovery, 9(5), e1326. https://doi.org/10.1002/widm.1326

    Profil recherché

    • Strong knowledge of biostatistics (Master program, engineering school in statistics or equivalent) 

    • Excellent working knowledge in statistical programming (R and/or Python) 

    • Interest in medical research 

    • Fluency in written and oral scientific English

    Déroulement des entretiens

    1. One meeting with HR

    2. Technical use case

    3. Meeting with Quinten Healthcare Manager

    Quinten
    Quinten

    Cette offre vous tente ?

    Partager cette offre
    Questions et réponses sur l'offre

    D'autres offres de Data Analysis

    Ces offres peuvent vous intéresser !

    1. Stockly
      Stockly
      Stockly

      Paris

      Stage
      1,5K à 2K € par mois
    2. Galadrim
      Galadrim
      Galadrim

    3. Matera
      Matera
      Matera

      Paris

      Stage
      1K à 1,2K €
    4. Deezer
      Deezer
      Deezer

    5. AXA
      AXA
      AXA

      Fontenay Sous Bois

      Stage
      Télétravail régulier
    6. Gameloft
      Gameloft
      Gameloft

    Voir toutes les offres