Este puesto ya no está disponible.

Senior AI Scientist, Computational Biology

Join Orakl Oncology, a pioneering company in cancer drug development. As a Senior AI Scientist in Computational Biology, you will design and implement advanced machine learning algorithms, develop generative AI and predictive models, and contribute to the computational foundation of PDO avatar analytics. You will work closely with cell biologists, bioinformaticians, and clinical collaborators to extract meaningful biological insights. This is a high-impact role in a vibrant and multidisciplinary team.

jobs.show.blocks.metaData.summary.generated

Indefinido
Le Kremlin-Bicêtre, Paris
Teletrabajo ocasional
Salario: No especificado
Experiencia: > 3 años
Formación: Doctorado
jobs.show.blocks.metaData.subtitle.key_missions

Design and implement advanced machine learning algorithms for large-scale, multi-modal biological datasets.

Develop and train generative AI and predictive models to capture disease heterogeneity and predict therapeutic responses.

Contribute to the computational foundation of PDO avatar analytics, working closely with cell biologists and bioinformaticians.

Orakl Oncology
Orakl Oncology

¿Te interesa esta oferta?

Preguntas y respuestas sobre esta oferta

El puesto

Descripción del puesto

Orakl Oncology is pioneering a new paradigm in cancer drug development by building the world’s largest cohort of patient-derived organoid (PDO) avatars. Through our unique platform, we generate extensive multi-modal data from these avatars to discover and validate new oncology therapeutics with real-world patient relevance.

We are seeking a Senior AI Scientist in Computational Biology to develop cutting-edge AI and ML solutions that integrate diverse biological datasets and accelerate therapeutic discovery. This is a high-impact role embedded in a vibrant and multidisciplinary team of experimental biologists and engineers.

What You’ll Do

  • Design and implement advanced machine learning algorithms for large-scale, multi-modal biological datasets, including genomics, transcriptomics and experimental PDO data.

  • Develop and train generative AI and predictive models to capture disease heterogeneity, predict therapeutic responses, and identify novel targets and biomarkers.

  • Contribute to the computational foundation of PDO avatar analytics, working closely with cell biologists, bioinformaticians, and clinical collaborators to extract meaningful biological insights.

  • Provide assistance in partnership and commercial projects and contribute with scientific and computational insights useful for our partners.

  • Present and communicate findings clearly to internal teams and external stakeholders; contribute to publications, presentations, and IP development.

Who You Are

  • A driven computational scientist with deep curiosity for biology and a commitment to translational impact.

  • A strong team player, eager to work in a fast-paced, cross-functional, and dynamic environment where continuous learning is encouraged.

  • You’re proactive, rigorous, and comfortable taking ownership of large and complex problems end-to-end.

  • You have an exceptional track record of delivering complex scientific projects at a sustained pace.


Requisitos

Must-have qualifications

  • Ph.D. or Master’s degree + 4 years experience in machine learning, artificial intelligence, computational biology, computer science, or a related field.

  • Extensive experience with Python, and deep learning frameworks such as PyTorch, JAX, or TensorFlow.

  • Proven expertise in one or more ML domains: generative modeling, graph neural networks, language models, causal inference, multi-task/transfer learning, active learning, or diffusion models.

  • Priior experience integrating multi-omics data into sophisticated AI models.

  • Strong knowledge of biological data formats and omics analysis (especially RNA-seq, WGS).

  • Familiarity with version control, cloud computing, and scalable model training (multi-GPU, distributed computing).


Nice-to-have qualifications

  • Hands-on experience in oncology.

  • Exposure to single-cell RNA-seq, spatial transcriptomics, or proteomics datasets.

  • Prior contributions to open-source software and/or impactful publications in top-tier journals or ML conferences.

  • Experience with pipeline development and workflow automation (e.g., Nextflow, Snakemake).

  • Strong understanding of drug discovery workflows, target ID, and translational biology.

¿Quieres saber más?

¡Estas ofertas de trabajo te pueden interesar!

Estas empresas también contratan para el puesto de "{profesión}".

  • AQEMIA

    Data Engineer

    AQEMIA
    AQEMIA
    Indefinido
    Paris
    Unos días en casa
    Inteligencia artificial/Aprendizaje automático, Farmacia/Biotecnología
    60 empleados

  • Descartes Underwriting

    R&D Data Scientist - CDI

    Descartes Underwriting
    Descartes Underwriting
    Indefinido
    Paris
    Unos días en casa
    Inteligencia artificial/Aprendizaje automático, Seguros
    250 empleados

  • Nabla

    Senior Machine Learning Engineer

    Nabla
    Nabla
    Indefinido
    Paris
    Unos días en casa
    Inteligencia artificial/Aprendizaje automático, Macrodatos
    60 empleados

  • Joko

    AI Automation Engineer

    Joko
    Joko
    Indefinido
    Paris
    Totalmente remoto
    Aplicaciones móviles, Inteligencia artificial/Aprendizaje automático
    88 empleados

  • digeiz.

    Deep Learning Research Engineer

    digeiz.
    digeiz.
    Indefinido
    Boulogne-Billancourt
    Unos días en casa
    Salario: 60K a 80K €
    Inteligencia artificial/Aprendizaje automático, SaaS/Servicios en la nube
    17 empleados

  • Lenstra

    Senior Analytics Engineer

    Lenstra
    Lenstra
    Indefinido
    Paris
    Teletrabajo ocasional
    Software, Inteligencia artificial/Aprendizaje automático
    30 empleados

Ver todas las ofertas