THESE - Radio Resource Management for LEO Constellations -F/H

Shrnutí práce
Jiné
Toulouse
Plat: Neuvedeno
Dovednosti a odbornost
Elektronické systémy
Matlab

Thales
Thales

Máte zájem o tuto nabídku?

Otázky a odpovědi ohledně nabídky

Pozice

Popis pozice

Lieu : Toulouse, France

Construisons ensemble un avenir de confiance

Thales est un leader mondial des hautes technologies spécialisé dans trois secteurs d’activité : Défense & Sécurité, Aéronautique & Spatial, et Cyber & Digital. Il développe des produits et solutions qui contribuent à un monde plus sûr, plus respectueux de l’environnement et plus inclusif. Le Groupe investit près de 4 milliards d’euros par an en Recherche & Développement, notamment dans des domaines clés de l’innovation tels que l’IA, la cybersécurité, le quantique, les technologies du cloud et la 6G. Thales compte près de 81 000 collaborateurs dans 68 pays. ​

Nos engagements, vos avantages

  • Une réussite portée par notre excellence technologique, votre expérience et notre ambition partagée

  • Un package de rémunération attractif

  • Un développement des compétences en continu : parcours de formation, académies et communautés internes

  • Un environnement inclusif, bienveillant et respectant l’équilibre des collaborateurs

  • Un engagement sociétal et environnemental reconnu

Votre quotidien

Le site de Toulouse Champollion regroupe les activités de l’ingénierie de systèmes satellites, de la conception et réalisation de charges utiles, du développement et la qualification de segments sol, il intègre un centre de recherche et un accélérateur industriel de start-up et ventures ainsi que les activités dédiées à la science des basses températures, plus précisément au développement et à la production de refroidisseurs micromécaniques pour des marchés exigeants.

Emerging Low Earth Orbit (LEO) satellite constellations are increasingly adopting direct radiating arrays (DRAs) as a key technology for next-generation communications. Unlike traditional reflector-based antennas, DRAs consist of electronically controlled arrays of radiating elements that can steer multiple beams dynamically without mechanical movement. This shift is driven by the need for greater flexibility, higher frequency reuse, and improved coverage agility to support broadband services and dynamic user demand on a global scale. Enabled by advances in digital as well as radio frequency and solid state technologies, emerging LEO constellations relying on DRA payloads offer unprecedented agility but also significantly increases the complexity of managing spectrum and power resources across thousands of beams and satellites.

Consequently, the development of advanced radio resource management (RRM) techniques becomes essential to fully exploit the potential of DRAs—enabling efficient beam coordination, adaptive interference mitigation, and optimized spectrum sharing between satellites and terrestrial networks. As a result, DRAs combined with intelligent RRM approaches are set to redefine how LEO constellations deliver seamless, high-performance connectivity within the evolving 5G and 6G ecosystem. A number of research questions remain open when it comes to the RRM of LEO networks with DRA payloads. RF hardware imperfections such as nonlinearities and load-pull effects at the power amplifiers may contaminate the spectral emissions and complicate the modelling of the DRA.

This topic has recently been addressed in the framework of the HARMONY MSCA project (https://www. harmony-horizoneurope.eu/papers.html), where tools enabling the end-to-end modelling of a satellite link have been developed for direct-to-device use cases. Extending these tools to broadband satellite links in the Ku- and Ka-bands remain an open question. Accounting for the aforementioned hardware imperfections in a constellation where the satellite experiences rapidly varying traffic as it orbits the Earth raises open questions about which coverage and radio resource management (RRM) strategies will best optimise service delivery.

The project will include the following core activities:

1. Establish models for accurate and efficient modelling of broadband DRAs in the Ku- and Ka-bands considering hardware imperfections

2. Set up simulation frameworks for the satellite payload and the traffic scenarios enabling to predict system performance

3. Investigate optimum RRM techniques for given operational scenarios

Research field:

• Telecommunication engineering

• Electrical engineering

• Aerospace engineering

Required skills:

• Orbital analysis

• Wireless communication systems

• Numerical simulation programming (Matlab)

The Thesis will include 18 months at Thales Alenia Space in Toulouse, followed by 18 months at the Heriot-Watt University, United Kingdom, Edinburgh. In total the PhD will span 36 months

Thales, entreprise Handi-Engagée, reconnait tous les talents. La diversité est notre meilleur atout. Postulez et rejoignez nous !

Chcete se dozvědět více?

Tato volná pracovní místa by vás mohla zajímat!

Tyto společnosti rovněž nabírají pracovníky na pozici "{profese}".