Este puesto ya no está disponible.

Data Scientist / ML Engineer (CDI)

Join our Knowledge team as a Data Scientist / ML Engineer. You will develop and deploy machine learning models for banking transaction contextualization, work on advanced NLP models, recommendation systems, and real-time inference systems. You will also build and maintain ML model training pipelines, feature engineering workflows, and model monitoring systems. The ideal candidate has 2-3 years of professional experience in machine learning, is proficient in Python and deep learning frameworks, and has a beginner to confirmed level in data manipulation and SQL.

jobs.show.blocks.metaData.summary.generated

Indefinido
Paris
Unos días en casa
Salario: 48K a 52K €
Fecha de inicio: 31 de agosto de 2025
Experiencia: > 2 años
Formación: Licenciatura / Máster
jobs.show.blocks.metaData.subtitle.key_missions

Développer, améliorer et déployer des modèles d'apprentissage automatique pour la contextualisation des transactions bancaires.

Travailler à l'intersection de la science des données, de l'MLOps et de la recherche pour concevoir des modèles NLP avancés.

Construire et maintenir nos pipelines d'entraînement de modèles ML, nos flux de travail d'ingénierie des fonctionnalités et nos systèmes de surveillance des modèles.

Paylead
Paylead

¿Te interesa esta oferta?

Preguntas y respuestas sobre esta oferta

El puesto

Descripción del puesto

Join a team at the heart of ML innovation !

The Knowledge team is responsible for developing ML algorithms and features around transaction enrichment and user knowledge.

It combines real-time NLP ML model inference and batch processing for marketing targeting, at-scale on large volumes of transactional data in our data warehouse.

As a Data Scientist within the Knowledge team, you will:

  • Develop, enhance, and deploy machine learning models for banking transaction contextualization with a focus on accuracy, performance, and scalability

  • Work at the intersection of data science, MLOps and research to design advanced NLP models, recommendation systems, and real-time inference systems

  • Build and maintain our ML model training pipelines, feature engineering workflows, and model monitoring systems

  • Create tools and automation for model evaluation, A/B testing, and performance tracking

  • Develop technical frameworks for ML experimentation, model versioning, and deployment

  • Actively contribute to model quality, data quality, and research reproducibility


Requisitos

Technical skills

  • Machine learning: 2-3 years of professional experience (excluding studies, internships, and apprenticeships)

  • Python: confirmed level (main language)

  • Deep Learning frameworks (TensorFlow/PyTorch): confirmed level

  • Data manipulation (Pandas/Polars): beginner to confirmed

  • SQL (PostgreSQL or other relational DBMS): beginner to confirmed

  • MLOps tools and practices: beginner level

  • Git/Linux/Docker: confirmed level

Mindset

  • Autonomous and able to take initiative

  • Research-oriented with an appetite for experimentation and innovation

  • Team player who enjoys collaborating and sharing, and works towards collective success

  • Builder rather than power-user: you enjoy creating and filling gaps in a growing scale-up ecosystem

  • Open source contributions or personal projects are welcome!

Here’s our tech stack

Experience in these areas can make the difference:

  • Python / PyTorch

  • Polars / Pandas

  • PostgreSQL

  • RabbitMQ / Kafka

  • GitLab

  • Clickhouse

  • Dagster

  • dbt

  • MLflow / Weights & Biases


Proceso de selección

  • Initial discussion with the CTO and Head of Data (30 min)

  • Technical test assignment

  • Technical discussion around the test with the team (1h30)

  • Final interview (30min)

Benefits

  • Attractive compensation package!

  • Meal vouchers (Swile card)

  • Sustainable Mobility allowance combinable with Navigo Pass reimbursement

  • “Remote friendly” work environment (possibility to work from home 2 days per week)

  • Offices in central Paris, 9th district

  • Participation in tech events (internal or external)

  • Support for publishing technical content

  • Bi-monthly All hands meetings in Paris followed by an evening event

  • Annual multi-day company offsite

  • Opportunity to participate in Paylead hiking trips

¿Quieres saber más?

¡Estas ofertas de trabajo te pueden interesar!

Estas empresas también contratan para el puesto de "{profesión}".

Ver todas las ofertas