AI Engineer (H/F)

Résumé du poste
CDI
Paris
Télétravail fréquent
Salaire : Non spécifié
Expérience : > 3 ans
Éducation : > Bac +5 / Doctorat
Compétences & expertises
Aptitudes à motiver les autres
PyCharm
GitHub
Pytorch
TensorRT
+4

Gleamer
Gleamer

Cette offre vous tente ?

Questions et réponses sur l'offre

Le poste

Descriptif du poste

The Role

As an AI Engineer, you’ll join our core Deep Learning team and contribute across the pretraining and fine-tuning stacks, driving product-ready improvements in medical AI models.

You’ll work in a fast-paced, research-meets-product environment with high standards for scientific rigor and production-grade code.


What You’ll Work On

Pretraining (images ± text)

  • Design and scale visual representations from large de-identified 2D/3D datasets

  • Objectives: masked image modeling, self-supervised/contrastive (MAE/DINO), vision–language alignment (CLIP-style)

  • Modalities: X-ray, CT, occasional MRI; 2D/3D ViTs and UNet-style decoders

  • Infra: high-throughput DICOM loaders, augmentations, mixed-precision, distributed training

  • Evaluation: transfer tasks, label efficiency, robustness across sites/vendors

Fine-tuning (Product Models & VLMs)

  • Adapt and optimize models powering Gleamer’s clinical features

  • Tasks: detection, segmentation, follow-up (temporal matching, tracking), calibration

  • Vision–Language Models (VLMs): fine-tune encoders + LLMs for report generation and extraction

  • Techniques: SFT, LoRA/PEFT, distillation, quantization

  • Deployment: Docker, ONNX, TensorRT, batching, inference optimization

  • Evaluation: AUROC/FROC, Dice, ECE calibration, factuality vs labels, clinician review


Tech Stack

  • PyCharm, Windsurf, GitHub Copilot

  • PyTorch (Lightning), MONAI, Hugging Face, timm

  • ClearML, DVC

  • Multi-GPU training, ONNX/TensorRT for deployment

  • Clean, production-level code: type annotations, comprehensive tests, documentation


Profil recherché

Must-Haves

  • Strong ML foundations (probability, linear algebra, optimization)

  • Proficient in Python + PyTorch; experience training/debugging deep nets

  • Strong communication and scientific rigor

  • Motivation to make a real impact in healthcare

Nice-to-Have

  • Experience with self-supervised learning and/or VLMs

  • Experience with medical imaging (X-ray, CT, MRI)

  • Knowledge in 3D vision, uncertainty, domain adaptation

  • Contributions to OSS or academic publications


Déroulement des entretiens

  1. Fit interview – informal conversation about your background and goals

  2. Technical interviews – (Deep Learning Knowledge, Deep Learning Solution Design, Software Engineering)

  3. HR interview – alignment on values, work style, logistics

Envie d’en savoir plus ?

D’autres offres vous correspondent !

Ces entreprises recrutent aussi au poste de “Données/Business Intelligence”.

Voir toutes les offres