AI Engineer (H/F)

Resumen del puesto
Indefinido
Paris
Unos días en casa
Salario: No especificado
Experiencia: > 3 años
Formación: Doctorado
Competencias y conocimientos
Capacidad para motivar a los demás
PyCharm
GitHub
Pytorch
TensorRT
+4

Gleamer
Gleamer

¿Te interesa esta oferta?

Preguntas y respuestas sobre esta oferta

El puesto

Descripción del puesto

The Role

As an AI Engineer, you’ll join our core Deep Learning team and contribute across the pretraining and fine-tuning stacks, driving product-ready improvements in medical AI models.

You’ll work in a fast-paced, research-meets-product environment with high standards for scientific rigor and production-grade code.


What You’ll Work On

Pretraining (images ± text)

  • Design and scale visual representations from large de-identified 2D/3D datasets

  • Objectives: masked image modeling, self-supervised/contrastive (MAE/DINO), vision–language alignment (CLIP-style)

  • Modalities: X-ray, CT, occasional MRI; 2D/3D ViTs and UNet-style decoders

  • Infra: high-throughput DICOM loaders, augmentations, mixed-precision, distributed training

  • Evaluation: transfer tasks, label efficiency, robustness across sites/vendors

Fine-tuning (Product Models & VLMs)

  • Adapt and optimize models powering Gleamer’s clinical features

  • Tasks: detection, segmentation, follow-up (temporal matching, tracking), calibration

  • Vision–Language Models (VLMs): fine-tune encoders + LLMs for report generation and extraction

  • Techniques: SFT, LoRA/PEFT, distillation, quantization

  • Deployment: Docker, ONNX, TensorRT, batching, inference optimization

  • Evaluation: AUROC/FROC, Dice, ECE calibration, factuality vs labels, clinician review


Tech Stack

  • PyCharm, Windsurf, GitHub Copilot

  • PyTorch (Lightning), MONAI, Hugging Face, timm

  • ClearML, DVC

  • Multi-GPU training, ONNX/TensorRT for deployment

  • Clean, production-level code: type annotations, comprehensive tests, documentation


Requisitos

Must-Haves

  • Strong ML foundations (probability, linear algebra, optimization)

  • Proficient in Python + PyTorch; experience training/debugging deep nets

  • Strong communication and scientific rigor

  • Motivation to make a real impact in healthcare

Nice-to-Have

  • Experience with self-supervised learning and/or VLMs

  • Experience with medical imaging (X-ray, CT, MRI)

  • Knowledge in 3D vision, uncertainty, domain adaptation

  • Contributions to OSS or academic publications


Proceso de selección

  1. Fit interview – informal conversation about your background and goals

  2. Technical interviews – (Deep Learning Knowledge, Deep Learning Solution Design, Software Engineering)

  3. HR interview – alignment on values, work style, logistics

¿Quieres saber más?

¡Estas ofertas de trabajo te pueden interesar!

Estas empresas también contratan para el puesto de "{profesión}".

Ver todas las ofertas